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In this paper, the generalized Langevin equation introduced by Kubo and 
Mori is formulated as a random integral equation. We consider (1) the 
existence and uniqueness of the solution, (2) moments of the solution process, 
(3) a comparison theorem for solution processes, and (4) the Cauchy polygonal 
approximation to the solution. 

KEY W O R D S :  Brownian motion; Langevin equation; random integral 
equation; Banach fixed point theorem; Cauchy polygonal approximation 
method. 

1. I N T R O D U C T I O N  

In the classical theory of Brownian motion, say in the case of a free particle, 
one starts from the Langevin equation 

,~(t) = -/3u + R(t, ~o) (1) 

where --flu represents the average force from the environment acting on the 
particle and giving rise to viscosity or friction, and R(t, o9) takes into account 
the extremely rapidly varying part of the force, bearing in mind the almost 
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continuous individual impacts of liquid or gas molecules with the Brownian 
particle. {As a concrete example, one can consider a simple passive electrical 
circuit subject to spontaneous fluctuations of electric current i(t). In this case, 
Eq. (1) becomes 

L[di(t)/dt] -~- Ri(t) = E(t) 

where E(t) is a fluctuating voltage term whose timescale is very rapid com- 
pared to the relaxation time L/R.} The random force R(t, co) in Eq. (1) is 
assumed to satisfy the following conditions: (a) R(t, co) is independent of 
u; (b) R(t, co) is centered and Gaussian; and 

(c) d{R(s)R(t)} = c~3(s --  t) (2) 

In the above, g is the expectation operator and 8 is the Dirac delta function. 
These conditions are reasonable; for example, the Gaussian assumption is 
quite reasonable for a Brownian particle having a mass much larger than the 
colliding molecules, since the motion is a result of numerous successive 
independent collisions, which enables one to appeal to the central limit 
theorem. For  a Brownian particle under an external force field (for example, 
a harmonic oscillator), the Langevin equation takes the form 

~(t) ----- --flu + A(t) + R(t, co) (3) 

where A(t) is the external force and the random force R(t, co) satisfies the 
same conditions as those of a free particle. For detailed treatments of the 
probabilistic theory of Brownian motion, we refer to the books of Doob tl~ 
It6 and McKean, 121 and Skorohod. c3) 

For physical reasons, the idealizations in the classical theory need to be 
modified for a more realistic treatment. Kubo ~4) and Mori ~5) have considered 
a generalization of Brownian motion theory to random motion of a particle 
which need not necessarily be heavier than the interacting molecules of the 
media. Thus the time scale of the molecular motion is no longer shorter than 
that of the particle under motion and this forces us to drop assumption (e). 
By considering more realistic situations which generalized Brownian move- 
ment, Kubo and Mori were led to a natural extension of the Langevin 
equation in the form 

{.t 
- -  7 ( t  - -  -r) u('r) d'r + A ( t )  + R( t ,  co), t > t o (4) = ) 

where 7(t) is a retarded effect of the (time-dependent) frictional force, A(t) is 
an external force, and R(t, co) is the random force not correlated with the 
initial velocity U(to). 
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In passing from the motion of Newtonian particles to Brownian particles, 
one goes from reversible processes to irreversible processes, as can easily be 
seen by computing the mean-square displacement of the particles. A basis fo r  
the study of irreversible processes is provided by finding closed formulas for 
the admittances to mechanical perturbations and kinetic coefficients in non- 
equilibrium system in terms of time correlations of physical quantities. From 
statistical mechanical considerations~ Kubo (as well as Mori) established 
these fluctuation-dissipation relations, thereby extending the Nyquist 
theorem. 

In the mathematical treatment of the classical Langevin equation, the 
Langevin equation is replaced b y  a formal differential equat ion for the 
velocity process u(t, co). In order to give a correct stochastic analog of the 
Langevin equation, it is necessary to remember that ~(t) need not exist, for 
example, the Brownian paths are not differentiable. The Langevin equation is 
rewritten in the following form: 

du(t) = --flu(t) dt + A(t) aft + dfl(t) (5) 

A rigorous interpretation of this differential equation is obtained, via 
stochastic integrals, by writing it i n .the integrated form 

t t 

= u(to) -- f flu(s)ds + f A(s)ds 4- fl(t) -- fl(t0) (6) u ( t )  
t o to 

Equation (6) is a special case of the more general It6 integral equation 

. t  t 

x(t) = x(to) + j m(s, x(r)) dr 4- f ~(~, x(r)) dfl(r) (7) 
to to 

[The last integral in (7) is a stochastic integral. For treatments of stochastic 
integrals, we refer to  the books of Bharucha-Reid, (6~ Doob,  m and 
Skorohod. ~)] 

In this paper, we give a rigorous treatment of the generalized Langevin 
equation. We take as the correct formulation of the generalized Langevin 
equation the following random integral equation: 

t 3 

o~) + f f 7(~ - u)x(u, ~o)d. d~ x ( t ,  o J) x ( t o  , 
to to 

t t 

+ f m(u, x(u, ~)) du + f ~(u, x(u, ~)) aM(u, ~) (S) 
to to 

In Eq. (7), fl(t, co) is a Brownian motion or Wiener process, Corresponding to 
(2), fl(t) satisfies the condition 

g{l fl(t, co) -- fl(s, o~)l ~} = a~l t -- s l (9) 

8 2 2 / 5 ] 3 " 5 "  
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where a 2 is a positive constant. In generalizing the Langevin equation, we 
have to abandon condition (2). In Eq. (8), the stochastic process M(t, co) is 
not a Brownian motion process, but is assumed to be a continuous martingale. 
Thus the stochastic integral in (8) is the Itb-Doob integral. 

In place of (9), M(t, co) satisfies the following condition: {M(t), ~ ,  
t r [t o , T]} is a continuous martingale such that there is a nondecreasing 
function F(t), t ~ [to, T], with the property that, for s < t, 

•{[M(t, co) -- M(s, oJ)]~L~} = F(t) -- F(s) (10) 

where g{. I ~ }  is the conditional expectation relative to the a-algebra ~ .  
We remark that a function F(t) with the above property exists if M(t, co) 

is a stochastic process with orthogonal increments (cf. Doobll~). 
In Section 2, we prove the existence and uniqueness of the solution of 

Eq. (8). The moments of the solution process x(t, w) are considered in 
Section 3. In Section 4, we prove a comparison theorem for the solution 
process. Finally, in Section 5, we consider the ploygonal approximation of 
the solution. 

2. E X I S T E N C E  A N D  U N I Q U E N E S S  O F  T H E  S O L U T I O N  

Let (g2, ~ ,  ~) be a fixed, complete probability space, and let [to, T] be a 
fixed interval on the real line. { ~ ,  t ~ [to, T]} is an increasing family of  
sub-a-algebras of ~ ,  and each ~ is complete with respect to the probability 
measure /x. In writing the stochastic process {x(t, co), t ~ [to, T]} we will 
suppress the argument co and write it as {x(t), t ~ [t s [to, T]}. Every random 
variable x stands for its equivalence class. All the stochastic processes consid- 
ered in this paper can and will be assumed separable. 

In this section, we establish the existence and uniqueness of  the solution 
of the random integral equation 

t r ,  s # 

x(t) = X(to) + / / - .)  x(.) du 
d t o J t o 

t t 

+ f m(., z(u)) d. + f a(u, dM(u) (11) 
to to 

Equation (11) is to be solved for t z (to, T]. We make the following assump- 
tions: 

(A) {M(t), ~ ,  t ~ [to, T]} is a continuous martingale such that there 
exists a nondecreasing function F(t), t ~ [to, T], with the property that, for 
s < t ,  

g{[M(t) -- M(s)] ~ I ~ }  = F ( t )  - -  F ( s )  (12) 
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(B) The functions m(t, x) and a(t, x) are measurable in the pair (t, x), 
for t 0 ~ t  ~ < T a n d - - o o  < x <  0o. 

(C) For each t ~ (to, T), 

t 

f d~ re(T, x)[ 2 q- ] a(~-, x)l 2} dF(r) < oo 
to 

(13) 

We remark that under condition (13), the I t6 -Doob  integral is defined. Also, 
the stochastic integral 

f ~(t, co) dM(t, co) 
to 

is defined for the class of functions ~(t, m) such that 

T 

t~ lf,o I ~(t), 2dF(t) < ~ I )  : 1  

We define the convolution (7 * x) as follows: Let 7(') e Ll([to, T]) and 
x ~ L~([t0, T]); then, for s e [to, T], 

f 
s 

(7" x)(s) = 7(s--  u) x(u)du, a.s. (14) 
to 

It is well known that (7 * x) is uniformly continuous on [to, T]. Using (14), 
Eq. (11) can be rewritten as 

t t 

to to to 

(15) 
We now establish the existence and uniqueness of  the solution of  the 

random integral equation (15). We need the following lemmas. 

Lemma 2.1. Let ~v(.) be the mapping on Lo~([t0, T]) defined by 

t t t 

qv[x(t)] ~- x o q- f (y* x)(u)du -t- f re(u, x(u)) du -1- f or(u, x(u)) dM(u) 
to to to 

(16) 
Let the following hold: 

(1) m(t, x) and a(t, x) are measurable in the pair (t, x) for t e [to, T] 
and --Qo < x < oo. 
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(2) (Growth condition). There is a constant  k such that  for t ~ [to, T] 
and every x, 

1 re(t, x)[ ~ ~< ke(1 + x 2) 

I or(t, x)l ~ ~ k2(1 + x 2) 

Then cp is a mapping into Loo([to, T]), i.e., q~: Loo ~ L ~ .  

Proof. From (17), we have 

]] m(' ,  x('))ll~ = ess sup I m(t,  x(t))l 2 
t~[to,T] 

k2(1 + ess sup I x(t)[!) 
te[to, T] 

(17) 

= k~( 1 + [] x I1~) < ~ (18) 

Similarly, a(., x(.)) e L~([to, T]). F rom the Thus m(., x(')) e L~([to, T]). 
uniform continuity of  (V * x) on [to, T], there exists an Mo > 0 such that  
1 7 * x l  ~< Mo. Now, 

/ 2 f~ ( (7 * x ) ( u ) d u  ~ (t - -  s )  I(Y * x)(u)l ~ du 
d 8 8 

Mo2(t - -  s)  2 (19) 

(t -- s) 2 [[ m(- ,  x('))[]~ 

<~ k2(t - -  s) 2 (1 + l[ x IlL) < oo (20) 

(21) 

and 

II or(., x('))[l~ IF(t) -- F(s)] 

T 
k2(1 + II x ll~) V F < 

~o 

where V~F denotes the total variation of F in [to, T] (F  is a monotone 
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function and hence is a function of  bounded variation). F r o m  (19), (20), 
and (21), 

11 ~(x)l[~ = ess sup i ~(x)[ ~ 
tS[to,T] 

~< 4 II Xo [l~ + 4Mo2(T -- to) ~ 
T 

+ 4k~(1 + IX x II~)[(T - -  to) ~ + V r ]  < ~ (22) 
t o 

Thus ~o: L~([to, T]) ~ L~([t o , T], which proves the lemma. 

Lemma 2.2. Let qo be the mapping defined by(16), and let the functions 
m(., .) and a(., .) satisfy conditions (1) and (2) of  Lemma 2.1. Let m(., -) and 
a(-, .) also satisfy the following uniform Lipschitz condition: 

(3) There is a constant k such that  for t ~ [to, T] and x and y 

] m(t ,  x)  - -  m(t ,  Y)l ~ k l x - - Y [  
(23) 

[ c r ( t , x ) - - ~ ( t , y ) l  ~ k l x - - Y [  

Then, some power of  ~: Lo~ ~ Lo~ is a contraction. 

Proof. For  ~, ~1 ~ L~ , define 

~ ( )  = r  - C v ( )  

Zlmi(.) = m(., ~oi~(')) -- m(', cpqT(')) 

,%(.)  = ,~(., r - o(., r 
Then, 

I A~(t)] ~ (y , _ _  ~ /  , ~9i--1~) dr + Amdr)  dr 
to 

, _ < 3 1 ~  t [~3 (fpi--l~ r  d r  

+ 3 fro Acre(r) dM(r) + 3  f2oAm,( , )d .  ~ * 

f' f' ~< 3(T --  to)l/~, 11~ I A~_I I s d~- + 3(T -- to) ~ k ~ I A,_~ d~- 
to to 

t 
-}- 3k ~ f I Ai_z 1~ dF(r) (24) 

to 
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Put  L : ( T  - -  to), A = 3L II )' 11~ + 3k2, and  B = 3k ~. Then ,  (24) b e c o m e s  

t t 
I/]~(t)l 2 ~ A f [ A~_~(~-)I2 d~- -t- B f I Ai-I(T)[2 dF(T) (25) 

t o to 

In particular, for i = 1 and 2, we have 

t d~-i + B [] A o IlL f t  dF(-q) (26) I/]~(t)] 2 ~ A I]/]o IlL fro to 

and 

t t 
] /]2(/)] 2 < A f [ /]1('/')[ 2 d'g ~- a f I/]1(~-)I u d F @ )  

to to 

f t  A A o + B ll ILL f,odF(~l)] d~ 
~'o ~o 

+ B rl IIL f to d~l + f "rl [ A m  o ~ B II Ao ][2 f t  dF(T)] dT 1 
to to 

to to to to 

+ AB  d-el dF(-r2) + B 2 dF(-ra) 
to t o * t o 

= ][ Ao IlL ( [ A 2 ( t -  to)2/2!]-]-AB l(- q -- to)F('~Ol*to 

fro F(~0 dr1 + [F(~-I) -- F(to) ] + 
to t o 

I] Ao IlL ((A~L2/2!) + AB{(t  -- to)[F(t ) --  Fifo)]} + (B2V2/2!)) 

II A 2 (2ABLV/2!) (B~V2/2!)] ,~ o II~ [(A2LZ/2I) + + 

= I[ Ao IlL (AL + BV)2/2 (27) 

where V = V~F = F(T)  -- F(to). Thus f rom (26) and (27), we have 

fI A1 IlL ~< fX Ao ElL (AL + BY) 

II A~IIL ~< Ir A011L (AL + BV)~/2~ 

We now show by induction that 

[l Am IlL ~ tl Ao IlL (AL + BV)'~/m! (28) 
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As we have seen, (28) is true for  m = 1 and 2. Let  (28) hold for  m = k. Then, 

II Ak+l II~ ~ A t AI~ dr  + B i Ak 12 dF(T) 
to to 

t 

{A(~- - -  to) -k B[FO') F(to)]} ~ dr  

+ B {A(r  --  to) + B[F(~') - -  F(to)]} k dF(r)) 
to / 

rl~/k!)(A l t [A( t  - -  to) + e ( F ( O  --  F(to))] '~ (H Ao 

o t 

k J {A0-  - to) + B [ F b - )  - -  f ( to) ]}  ~-1 ~-d[Ab- - -  to) 
to 

F(to))l I + B lF(t ) [A(t  - -  to) + B(F(t )  - -  f(to))l ~ + B(F(-r) 
t~ t 

k J F(r ){A(r  --  to) + B[F(r) - -  F(to)]} k-1 d[A(r  --  to) 
to 

+ B(F(r)  --  F(to))]}) 

t l~/k!)({A(t  --  to) + B[F(t)  --  F(to)l} k {At  + BF(t)}  (ll Ao 

- -  k f~ {A(~- --  to) + B[F&) --  F(to)]} k d[A(~" --  to) 
to 

+ B(F(-r) --  F(to))] 

--  k[Ato + BF(to)] [~ {A(~- - -  to)+ B[F(~-) - -  f(to)]} ~-1 
d tO 

• d[A('r - -  to) + B(F(r)  - -  F(to))]) 

= (It'do [l~/k!)({A(t --  to) + B[e( t )  --  F(to)]} ~+~ {1 - [k/(k + 1)}) 

~< [1] 'do I]~/(k @ 1)!](AL + B V )  k+a (29) 

Thus we obtain (28) for  all m. Now,  given A, 0 < A < 1, we can choose a 
sufficiently large n such that  ( A L  • BV)" /n !  ~< A 2, and therefore 

II ~ o ~  - -  ~ o ~  I[~ = II An II~ ~< ~ II ̀ do tl~ = Z I1 ~: - ~ lie (30)  

Hence q~" is a contraction,  and this proves the lemma. 

T h e o r e m  2.1. Let  conditions 1-3 o f  Lemmas 2.1 and 2.2 hold. Then,  
there exists a unique solution process x( t )  satisfying (11) for  every t ~ [to, T]. 
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Proof. It follows from Lemma 2.2 that for some n, the power qo ~ of the 
mapping qo: Lo~([to, T])-+Lo~([to, T)] defined by (16) is a contraction. 
Therefore, it follows (cf. Kolmogorov and Fomin, m p. 70) that the mapping 

has a unique fixed point; that is, there is a unique (up to equivalence) 
stochastic process x(t) such that q~x(t) = x(t). Thus Eq. (15), and hence Eq. 
(11), is satisfied by x(t). This proves the theorem. 

The following theorem concerns continuous solutions of Eq. (11). 

Theorem 2.2. LetF(t) be continuous, and let C([to, T]) be the Banach 
space of continuous processes. Define ~ on C[to, T]) by (16). Let the hypo- 
theses of Theorem 2.1 hold. Then ,there exists a unique (up to equivalence) 
continuous solution x(t) satisfying Eq. (2.1) for every t ~ [to, T]. 

Proof. q~ is defined on C([t0, T]). Since F(t) is continuous, from 
(19)-(21), it follows that the range of ~ is contained in C([t0, T]); that is, 
q~: C([to, T]) -+ C([to, T]). The assertion of the theorem now follows if we 
replace L~ by its subspace C([t0, T]) in Lemmas 2.1 and 2.2 and Theorem 2.1. 

3. M O M E N T S  O F  T H E  S O L U T I O N  P R O C E S S  

For the sake of convenience, we shall consider the motion of a free 
particle; that is, we assume that m(., . ) ~  0. In this case, the motion is 
represented by the equation 

X( t )= x o -  j f 7(s--  u) x(u)duds @ f cr(s,x(s))dM(s) (31) 
to to to 

In this section, we study the moments of the solution process generated by 
Eq. (31). First, we compute the mean and variance of the solution process. 

From (31) and the fact that g{j '~(t)  dM(t)} = 0 (cf. Skorohodl3)), 

~t s 

- Xo) = - j f - u )  e { z ( u ) }  au 
to to 

(32) 

Now, 

~ f~ duds f ~/(s -- u) x(u) or(s, x(s)) dM(s) 2 
to to t o 
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so that 

~,(s - .) x(.) ~ { [ x ( t ) -  x~ = ~ i[Y~~ f]o du d~] ~} 

/ + g{[a(s, x(s))] 2} dF(s) (33) 
to 

To obtain (33), we have used the fact that 

to r ~:(t)12) dF(t) 

Fubini's theorem, and the fact that 

C 0 

We denote by ~2{x} the variance of the random variable X. Then, 

~{x(t) - xo )  = ~ { [ x ( t )  - x o P }  - ~ { [ x ( t )  - Xo] 2) 

/ + d~[e(s, x(s))] 2 dF(s) (34) 
to 

Without any appeal to mechanics, one can easily see that Eq. (4) holds 
for any differentiable stochastic process. So, let us next consider the moment 
equations for the solution process generated by Eq. (31). Let ~0(t, x) be an 
arbitrary function with bounded continuous derivatives q0~, qo~x, etc. Using 
Taylor's theorem, we have 

A~ = v)x Zlx + ~ ( A x )  2 + o(zlx)~ (35) 

From (31), we have 

and 

d~ + At) -- x(t)] ~ I x(t)} = ~2(t, x(t))[F(t + At) -- F(t)] + o(dt) (37) 

Noting that cp(t, x(t)) is ~-measurable,  we have 

7(t x) x(s) ds] 8{Aq) t x} = --[q~(t ,x(t))  fro -- At 

+ �89 x(t)) e2(t, x(t)) Ar(t)  + o(At) (38) 
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Taking expectations on both sides of (38), 

#{Acp} = -- ~ ~o~(t, x) fro ~(t -- s) x(s) ds At 

-t- �89 x) ~2(t, x(t))} AF(t) -I- o(At) (39) 

Dividing throughout by A t and taking the limit as A t --~ 0, we obtain 

t 

(d/at) #{~(t, x)} = -- f ),(t -- s) g{q)~(t, x(t)) x(s)} ds 
, )  

to 

-b �89 x(t)) a~(t, x(t)))(d/dt)F(t) (40) 

W e  obtain the moment equations for the solution process from (40) by 
taking ep(t, x) equal to x ,  x ~, etc. For example, 

(d/dO #{x} it = -- ~(t -- s) #{x(s)} as (41) 
t O 

and 
t 

(d/dt) d~{xS(t)) : --2 f ~(t -- s) r x(s)) ds + g{cr2(t, x(t)))(d/dt)F(t) 
to (42) 

Since the I tS-Doob integral, as a function of the upper limit, is a martin- 
gale, the family 

t s 

(x(t) - Xo + f f ~,(s - u) ~(u) du d~, ~ , t ~ [to, rl~ 
d tO , s  to 

is a martingale. Here, without much loss of generality, we shall assume that 
the initial velocity x0 is a positive constant. Then, from standard martingale 
inequalities, we obtain the following inequalities: 

I I 
\ t e [ t o , T ]  t o to 

y(t s) x(s) ds dt f (43) <~ x~ t X(T) + f t~ f~o - 7 

and 

t~[ to ,T]  t o to 

T 

7(s - u) x(u) du (44) 
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Finally, we consider the asymptotic behavior of .@~{x(t)}. Let us assume 
that a(t, x(t)) >/0  > 0, and that F(t) monotonically increases indefinitely as 
t I' oo. In this case, we have 

.@2{x(t)} ~ ~Z{x(t) -- x0) 
t 

>~ f 8{[~(t, x(s))]2} dF(s) 
to 

02[F(t) -- f(t0) ] --~ oo as t t oo 

Also, the variance ~2{x(t)} -+ oo as t 1' oo in the case of  slow relaxation 
since, in this case, the particle becomes a Brownian particle and Eq. (4) 
reduces to the classical Langevin equation. 

4. A C O M P A R I S O N  T H E O R E M  F O R  S O L U T I O N  P R O C E S S E S  

For a free particle, the integral equation describing the motion is given 
by 

t s t 
x ( t )  

d to Z to  Zto  

---- Xo -- (Jtot (~' * x)(s) ds + fttoC~(s, x(s)) dM(s) (45) 

In this section, we shall prove a comparison theorem for the solution process 
which roughly says that, under suitable assumptions, if two particles start 
with the same initial velocity, the motion of the particle that moves under a 
greater damping force (e.g., in a fluid with more viscosity) is slower than the 
other particle. In other words, if damping is increased, the motion slows 
down. 

For i = 1,2, let {xi(t), t ~ [to, T]} be the continuous solution process of  
the equation 

xi(t) "(~) f t  ft = ~o -- @i * xl)(s) ds + a(s, xi(s)) dM(s) (46) 
to to 

with the same ~(', .) and M('). 

Theorem 4.t .  Let 71, )'~, and a(., .)satisfy the following conditions: 

(1) a(t, x) is continuous in its variables t E [to, T] and x E (--  oo, 0o). 

(2) a(t, x ) >  0, and for every c > 0, there exists an ~ > 1/2 and 
K > 0 s u c h t h a t f o r l x J  ~ c ,  J y [ ~ c ,  

I ~(t,  x )  - ~(t,  y) l  ~< K I x - -  y I s (47)  
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(3) xl(t) and x2(t) are the continuous solutions o f  Eq. (46) under  the 
conditions of  Theorem 2.2. 

(4) 71 * Xl < 7~ * x2 for every t ~ [to, T]. 

(5) Let  -r be a stopping time. 

(6) xI(T) = x~(~') a.s. 

Then,  there is a ~-~ with ~-~ > ~- a.s., and for s E (% -r~), the inequality 
x~(s) > x~(s) is satisfied a.s. 

Proof. For  s e [to, T], define ~b(s) = 1 if and only if 

and 

(i) .'r ~< s 

(ii) inf  [(72 * x2)(u) - (71 * xz)(u)] > �89 * x2)(z) - (71 * x0(~')l 

and ~b(s) = 0 if and only if 

(iii) s < -r 

and (iv) for  s > % we have 

inf  [(72 * x2)(u) -- (71 * xi)(u)l ~ �89 * x2)(~-) - -  (71 * x0('r)] 
"r<~u<<.s 

Also define for  k > 0, e > 0, and s ~ [to, T] 

t/tlec($) = I[O.e]{ sup  [I Xl(U)l + [ X2(/'/)]]} I[,.,+~l~b(S) (48) 
to <~ u ~ s 

We need the following lemma for  the p roo f  of  Theorem 4.1., 

L e m m a  4.1. The following holds with probabil i ty 1: 

T P 

lim k-1 j ~b~"(s)[~(s, xl(s)) -- a(s, x2(s))] dM(s) = 0 (49) 
k~O to 

Proof  of  Lemma. First, we obtain the following estimate: 

g lft~ ~k~(s)[cr(s'xz(s))--cr(s'x2(s))]dM(s)I ~ 

S = dF(s) 
to 
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Y {since d ~ ~o~(t)dM(t)i2}= ~o#{l~(t)l~}df(t), and [r162 

~< K ~ f~ ~{r176 x~(s)  - x~(s)? ~} dF(s 
to 

[by Eq. (47)1 

K2r I[f: Ckv(s)dF(s)]l-a [f~ Ck~(s)I Yl(s)--x2(s)]2dff(s)]~l 

(by Holder's inequality) 

(by Holder's inequality) 

K2[~{~'(7 �9 -~- k)  - -  F(-/')}1 l-a [f/T o ~x~162162 X2(S)]2} d/7(S)]~ 

(50) 

In the above estimation, we have also used Fubini's theorem several times, 
We note that ~b~(s) = 1 if and only if 

(v) sup {1 x~(u)l + I x~(u)t} ~< c to<~u~s 
(vi) s e [to, T] 0 b', �9 + k] 

and 

(vii) r = 1 

If  u ~ s, then ~ ( s )  = 1 implies ~b~(u) = I[.,~](u). From this, 

fs ~ ( s ) [ x l ( s )  - x2(s)l = r r �9 x~)(u) - (~ i  * xO(u)] du 
~r 

+ ~o(s) f~ ~o(u)t~(u, xl(~))- ~(u, x~(u))j aM(u) 
(51) 

From the uniform continuity of  (~ �9 x) on [to, T], there is an H such that 

Xto,~l(x)(t r l  * x~l + 1 72 * x~l) ~< H (52) 
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We now have 

i f t~ 4s~'C(s)[cr(s' xz(s) ) -  a(s, x2(s))] dM(s)l 2 

T a 

to 

[by (50)] 

r eg t~bk,(s)[8H2k2 

+~ (~Lo ~)Eo~; ~ ) ) -  ~ ,  ~u))J ~,(u))~t] ~s)l  ~ 

[by 51) and (52)] 

<~ K2[d~ @ k) -- F(,)}] 1-~ [8H2k~[#{F(~ + k) - F(r)}] 

+ 2 f d' ~'(s ~bk'(u)[~(u, x,(u)) -- c~(u, x2(u))] dM(u 
to ~o 

• dF(s)] ~ 

<~ K~k2~g{F('r + k) -- F(~')} + K2[d~{F(T + k) -- F(r)}] 1-e 

~o ~o 

• dF(s)] ~ (53) 

where K1 and Kz are constants. But 

~ ( s )  ?,~(u)[~(u, x~(~)) ~(u, x~(u))] dM(u) aF(s) 
% to 

- -  ~ ~kC(u){cr(u, xl(u)) e(u, x2(u))} dM(u)] 2 [F(~" § k) F(~')] max [fro 

Using the martingale inequality for this estimation, we obtain 

T 

~< 4e(f( ,  +/c) - Fb-)}f e{r x~(u)) - r,(u, x~(u))p} dF(s) 
to (54) 
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Put 

i v(k) = g ~b,~(u)[a(u, x l(u))  - -  or(u, x~(u))] dM(u)  
to 

F r o m  (53), (54), and the stochastic integral isometry, for  some constant  co 
and c~, the following inequality obtains: 

v(k) <~ cok~[g{F(z  + k)  - -  F(-r)}] + c~g{F(z -k k)  - -  F(r)}[v(k)] ~ 

Hence,  

~(~)[e{F(. + k) - -  F ( , ) } ] - l k -~  

~< Co + c lg -~+~ ' [ e{F( -  + k) - -  F(r)}p 

• (~(k)[o~{r(~ + k) - -  F ( , ) ) ] - l k - ~ )  ~ (55) 

We claim that  there are positive constants D and 8 such that  

v(k )[g{F(r  -t- k )  - -  F(r)}]- lk  - ~  ~< D if  0 < k ~< 8 (56) 

We prove this by contradiction. Suppose that  (56) is not  true and that  there is 
a sequence {ki} with the properties that  kl -+ 0 and that  

v(k,)[N{F(-r + ki)  - -  F(~-)}]-lk - ~  ~ oo as i---~ oo 

Let  B = [to, T] • [--c,  c] and �89 < [3  < a < 1. By hypothesis, a(-, .) is 
bounded,  say by the constant  2V, and if (t, x), (t, y)  E B, we have by (47) that  

I or(t, x )  - -  a(t, Y)l ~< K[  x --  y I �9 

< ~ K l x - - y [  B if  [ x - - y [ ~ < l  

I ,,(t, x)  - o(t, y)t <~ 2 ~  
~ < 2 2 V l x - - y ]  ~ if ] x - - y l  > 1  

Thus, if N o = max{K, 2N}, we have 

I a(t, x) - -  or(t, y)[ ~< No l x - -  y l ~ 

F r o m  (55), taking k~ = k, we have 

{v(k)[E{F(r -k k)  - -  F(r)}]-~k-2~} 1-~ 

<~ Co(v(k)[g{F(r q- k)  - -  F(r)}]-~k-2~) -~ 

-[- Cl[~{F(r @ k)  - -  F(r)}k-~l~k ~(~-~' 

Since c~ < l and [v(k~)[g{F(r + kl)  - -  F(r)}]-lk72~] -+ o% the left-hand side 
o f  the above inequality goes to oo as i --+ oo. But o~ > �89 and the first term on 
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the right goes to zero. The second term also vanishes by the monotonicity 
o fF .  Thus we get the contradiction oe ~< 0. This establishes our claim (56). 
Hence 

' .T 12 e lJ Cke(s)[cr(s' x~(s)) -- a(s, x~(s))] dM(s) ~ De{F("r + k) --  F(~')} k -~" 
to 

Let 

and 

~(s) = IE0,~{, sup_<, [I xdu)l  + [ x~(u)[} r x~(u)) - o(u, x~(u))] 
0 --~/r ~ 

~(t) = f ~l(s) dM(s) 
~o 

Clearly, {~:(t), t E [to, T]} is a martingale and hence {~:(r + k)} is a martingale. 
This implies that {Z(k) = [~:(~- + k) -- f(-r)], k ~ R +} is a martingale. There- 
fore, from the martingale inequality we have, for 0 < k o < 3, 

(0<k<k0 ft~ J:Jlcc(S)[g(S, X I ( S ) ) -  O'(S, X2(S)) ] dM(s))  ) 

~< 4D#{F(r + k0) -- F(r)} k -2~ (57) 

Consequently, 

i sup k-1 J o  ftT r X I ( S ) ) -  o'(S, X2(S)) ] dM(s) ~" yl-1 I 

/L loSUp_~ f,~ ~b~"(s)[a(s, x l ( s ) ) -  (r(s, X2(s))] dM(s )<~  n-12 -~-1} 

(O~k~<2 -~ t o 

(by Chebyshev's inequality) 

<~ n222"+~4D#{F(r -+- 2- ' )  -- F(r)}(2-~) 2~ 

-~ 16D2-"(~-2)n2#{F('r § 2 - ' )  --  F(~-)} (58) 

We now make a further assumption on F. Let us assume that F is  continuously 
differentiable (F is monotone). One can avoid the above assumption by a 
random time change on the continuous martingale M(t).  From the continuity 
assumption on U(u), we have a bounded derivative, say F'(u) <~ K o . Also, 
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F(r + 2 -~) -- F(r) = 2-~F'(u) for some u ~ [r, r + 2-n]. Under the said 
assumptions on F, 

[Eq. (58)] ~< 16Dkon~2 -~(2~-1) (59) 

Since a > �89 327=1 n=2 -~(~-1) < oo. Therefore, by the Borel-Cantelli lemma, 
it follows almost surely that 

T 
lim k-1 J ~c(s)[~(s, xl(s))  - ~(s, x~(s))] dM(s )  = 0 
k~O to 

This completes the proof of the lemma. 

Proof of  Theorem 4.1. From the definition of r we have 

T 
f r162 * X2)(b/) - -  (Yl * X1)(U)] q- k) du 

to 

T 
f ~b~(u) 2-1[(y2 * x2)(r) -- (r* * xl)(r)] ~ ( ,  + k) du 

to 

= 2-aksbk~(r + k)[(y2 * x2)(r) -- (y, * Xl)(r)] 

Therefore 

4~~ + k)[xl(r + k) -- x~(r + k)] 

T 
= ~ ( ~  + k) f ~~ �9 x~)(u) - -  (71 * x0(u)] du 

,o 

-~- ~[Jkc(T + k) fT ~kc(b/)[O'(/'/, Xl(b/)) - -  O'(b/, X2(/g)) ] dM(u) 
to 

k)12-1[(y~ * x2)(r) -- (Yl * X1)(T)] >~ k~k~(r + 

+ k-1 ft{ ~bk~(u)[~(u' x l ( u ) ) -  ~(u, x2(u))] dM(u) 1 (6O) 

By Lemma 4.1, there exists a positive h such that, for 0 < k < h, 

< 4-z[(y 2 * x2)(r) -- (r, * x0(r)] 
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so that, for  0 < k < h, 

C e(, + k)[x~(~ + k) - -  x2(~ + k)l 

~> ~r + h)[(7~ * x2)(z) - -  (7~ * xO(r)] (61) 

But for  a lmost  all w, there are positive constants  e and k 0 such that  
~ke(~ - + k) = 1 for  0 < k < ko.  Hence the theorem. 

T h e o r e m  4.2. Let  conditions 1-4 of  Theorem 4.1 hold. I f  

~ { x ~ ( t . )  = X~Oo)} = 1 

then xl(t) >~ x2(t) a.s. 

Proof  Let 

r = inf{t ~> to : xl(t, co) >~ x~(t, co)} 

~- is a s topping time. By the continuity of  the solution, we have 
xi(-r(~o), c o ) =  x2(~-(co), co). By Theorem 4.1, there is a ko > 0 such that  
xz(t) > x2(t) for  ~- < t < ~- + k 0 . Thus if T z i s  the first zero of  (xl(t) --  x2(t)), 
then ~-1 is a stopping time and there is a stopping t ime ~-~ such that  Xl(/) • x2(t ) 
for  t ~ (~'1, %). Cont inuing this process, we observe that  a zero of  
(x~(t) --  x2(t)) follows a zero of  the same. Arranging these zeros in an in- 
creasing sequence r,-, if there is a maximal  zero ~-*, then by Theorem 4.1, 
there is a positive h such that  xt(t) = x2(t) for t e (r*,  r*  + h). The difference 
xl(t) --  x~(t) retains its sign in (~-*, T) so that  xl(t) > x2(t) for (r*,  T). Thus 
for  all t ~ [to, T], x~(t) > x~(t) almost  surely. 

5. P O L Y G O N A L  A P P R O X I M A T I O N  T O  T H E  S O L U T I O N  

In  this section, we show, by adapt ing cauchy's  method,  that  the solution 
of  

�9 t . s  t 

x(t) = xo + j 3 - + f re(u, x(u)) 
to to to 

, f t  a(u, x(u)) dM(u) 
to 

(62) 

can be approximated  by a Cauchy polygon,  and this will give an estimate of  
the accuracy of  the approximat ion.  Standard texts on differential equations 
(cf. Birkhoff  and Rota  (s) give the Cauchy polygonal  method  and Gronwal l ' s  
lemma,  which is used in this section. 
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F r o m  the uni form continuity of  (7 * x)(s) on [to, T], there is a constant  
K0 > 0 such tha t  I 7 * x I ~ K0.  We shall assume that  re(t, x) and a(t, x) are 
joint ly  cont inuous for  t e [to, T] and x e ( - -  0% ~ )  and  satisfy the usual 
Lipschitz continuity in x. Let  x(t) be bounded  by  A > 0 in mean  square. 

F o r  fixed ~, re(t, ~) and a(t, ~) are cont inuous  on [to, T] and hence are 
bounded  there. By the Lipschitzian continuity,  there exists a constant  
L ~ Ko such that  

l] m(t, x)H2 ~< L and II a(t, x)Hz ~< L 

Under  the assumpt ions  made  above,  we have 

where 

and 

g(8) -+ 0 as 8 --+ 0 (63) 

g(8) = max[F(8) ,  m(8), a(8)] 

P(3) = sup 
It--s[ <a  

m(8) = sup 
It--s] <:a 

~r(3) = sup 
It-s] < a  

11(7 * x ) ( t )  - (7  * x)(s)ll~ 

H m( t ,  x ( t ) )  - m( s ,  x(s))Hz 

t] ~( t ,  x ( t ) )  - ~(s ,  x(s))ll~ 

The funct ion F(t) associated with the mart ingale  M(t)  is cont inuous and  
monotone .  We also assume that  F(t) is differentiable everywhere and has a 
bounded  der ivat ivef( t ) ,  with bound  B. 

Let  7r: t o < t 1 < ... < t n = T be a par t i t ion of  [t o , T] and let 1[ zr I11 
denote the mesh of  the par t i t ion 7r, i.e., I] 7r [1 = max{(ti - -  t~_0:1 ~ i ~< n}. 
We want  to show that  for  each e > 0, there is a 3 > 0 with the fol lowing 
proper ty :  Let  x(t) be a solution process of  Eq. (62) and 7r be a par t i t ion with 
[I 7r 11 < 3. I f  x,( t )  is the Cauchy polygonal  approx ima te  solution o f  Eq: (62),. 
then, 

[1 x~(t) --  x(t)H2 < ~, t o ~< t ~ T (64), 

Now,  we define the Cauchy  polygon as follows: 

(i) X~(to) = Xo 

and (ii) if  x~ has been defined for  t o ~ t ~ t~, we define 

x~(ti+~) = x~(tO -k (7 * x~)(t~)(t~+l - -  t,) 

-k m(t~, x~)(ti+l - -  tO § a(t l ,  x=)[m(ti+O --  M(tO] 

and for  t e (t~, t~+~), we define x~ by linear interpolat ion between x~(t~) and 
x~(t~+O. 

822/5 /3 -6  
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First, we consider I[ x(t)  --  x(s)ll~ : 

ft x ( t )  - x(s)ll~ = # { x ( t )  - x ( s ) )  ~ 

<~ 3#  (Y * x)(u) du + 3#  re(u, x(u)) du 
8 8 

For  to <~ s < t ~< T, we have 

# ( Y * x ) ( u ) d u  < ~ L 2 ( T - -  t o ) ( t - - s )  
s 

# 

# a(u, x(u)) dM(u) <~ L~B(t - -  s) 
8 

Using these estimates in (65), we obtain 

]1 x( t )  --  x(s)l]~ ~ 3L 2 [2 (T- -  to) + Bl(t  --  s) 

Therefore  there is a constant c~ > 0 such that  

[[ x(t)  - -  x(s)[]~ ~ ~(t - -  s)l/2 (66) 

We formalize the definition of  x~ as follows: For  any t ~ [to, T], there is an 
i, 0 ~< i ~ n - -  1, such that  t ~ [ti ,  ti+O and we define 

x~(t) = Xo + (Y * x=)(T~s) ds -k m(T~s, x~) ds 
to  ~,o 

f~i ft,+a 
+ a(T~s, s~) dM(s)  -k q(t) a(t~, x~) dM(s)  (67) 

7~ o t o 

where 

and 

T~t : ti if ti ~ t ~ t~+l , O ~ i ~ n - - 1  

q(t) -~ (t - -  ti)/(ti+l --  tO 

D. Kannan and A .  T.  Bharucha-Reid 
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Now, from (67), 

x.( t )  - x(t) = f [(~, �9 x.)(T~s) --  (~, �9 x)(T~s)] sd 

-}- f [0' * x)(T~s) -- O' * x)(s)] ds 
r 

+ f [m(T~s, x.) -- m(T~s, x)] ds 
to 

t 
+ f [m(T.s, x) -- m(s, x)] ds 

to 

+ riot, [e(T~s, x~) -- cr(T~s, x)] dM(s) 

f' + [g(T~s, x) -- ~r(s, x)] dM(s) 
to 

q- q(t) f,,+z ~(h , x(h)) dM(s) q- f ,  --~(s, x(s)) dM(s) 
a tO 0 

9 

----- Z I~ (68) 
k = l  

where Ik is the kth integral appearing in the expression (68). Therefore 

9 

#{x~(t) -- x(t)} 2 ~< 9 2 g{Ifl} (69) 
k = l  

Define q~(t) as follows: for t ~ [to, T), 

~o(t) = sup ~ { [ x ~ ( s ) -  x(s)]~) (70) 
s~[to,t] 

Next, we shall estimate IJ Ik ]1~, 1 ~< k ~< 9. We will use Schwarz's inequality 
in several places. Applying the Cauchy-Schwarz inequality for the integrals 

frets  f~*o and jt0 , and noting that (~,2.1), where 1 is the function identically equal 
to 1, can be majorized by a constant c > 0, we get 

r ~ c f ~(s) ds 
~o 

~{I~} ~ (t -- to) ~ [/~(~)]2 
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d~ <~ (t -- to) K 2 f f  E{x~ --  x} 2 ds 
to 

<<. K2(t -- to)f~ ~(s)ds 
to 

using the Cauchy-Schwarz  inequality and the Lipschitz condition, 

g i I ? )  ~< (t - r 

Using the stochastic integral isometry and the Lipschitz condition, we obtain 

s 2} <~ K2B F~o ~(s) ds, d~ 2} ~< ( h -  to)B[~(c])] 2 

f 
t i + l  

g{I7 ~} = [q(t)] 2 g { a ( h ,  x~) --  a (h ,  x)} 2 dr(s) 
to 

t 
~< [q(t)] 2 K 2 ,(t~+lt~ cp(h) dF(s) <~ K2B f.~, q~(h) ds 

d~{/s 2} <~ LZB 1! ~r II, ~{I~m} <~ L2B/I ,~ II 

We denote by [. the max{K, L}. In the following, we combine the estimates 
for II I~ ll~ a n d  1It7 I1~-From the above estimates, we obtain 

t 
~o(t) <~ c f c?(s) ds + (t --  to) 2 [g($)]2 

to 

+ [~2(t -- to) f p(s) ds -t- (t -- to) 2 [g(3)]2 
to 

~o(s) ds + (t to) B[g(3)] ~ + 2Bf, 2 ]I ~r H +/~2B fro 
= ~(t) + ~(t) q)(s) ds �9 (71) 

to 

where 

and 

~b(t) -~ {[g(3)]~[2(t - to) 2 + B(t -- to)] + 2B[,2]] ~ H} 

~(t) = [c + [,~{B '4- (t -- to))] 
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Applying Gronwal l ' s  l emma  to (71), we obtain  

Inequal i ty  (72) yields (64) upon  noting that  

~b(T) = max  ~b(t) --+ 0 as II ~" 1i--+ 0 

F o r  a given admissible error  g > 0 and  the Cauchy  polygonal  approxi-  
mate  solut ion x , ,  clearly the Lz-norm o f  x(s)  is major ized by the sum o f  the 
error  ~ and 

sup [1 x=(s)H2 
s~[to.t] 

This enables us to find ~b(t) and ~(t). Hence  q~(t) can be estimated, which gives 
the accuracy of  the approximat ion.  
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